##plugins.themes.bootstrap3.article.main##

Theoretical investigation on the elastic constants, phonon frequencies, thermodynamic and the transport properties of PtAsP mixed cubic pyrite phase was performed using the first-principles calculations based on the density functional theory. The calculated equilibrium crystal parameter is in excellent agreement with experimental data. The derived bulk and shear moduli are much higher than other theoretical data, suggesting that PtAsP may be a highly incompressible material. The detailed analyses of the electronic structures showed that PtAsP is an indirect energy gap compound and is elastically and dynamically stable. By using the harmonic Debye model, some thermodynamic properties including vibration free energy and constant volume heat capacity were calculated. The evaluation of the transport properties showed that PtAsP is a p-type material with capacity for improved performance when its charge carrier concentration is between 1016 cm3 and 1018 cm3.

References

  1. Hung, A., Muscat, J., Yarovsky, I., & Russo, S.P. (2002). Density-functional theory studies of pyrite FeS2(100) and (110) surfaces. Surface Science 513(3), 511 - 524.
     Google Scholar
  2. Mori, K., Usui, H., Sakakibara, H., & Kuroki, K. (2014). Theoretical expectation of large Seebeck effect in PtAs2 and PtP2. Journal of the Physical Society of Japan, 83(2), 023706.
     Google Scholar
  3. Hicks, D., Mehl, M. J., Gossett, E., Toher, C., Levy, O., Hanson, R. M., Hart, G. L. W., & Curtarolo, S. (2019). The AFLOW Library of Crystallographic Prototypes: Part 2, Computational Materials Science, 161, S1-S1011 (doi=10.1016/j.commatsci.2018.10.043).
     Google Scholar
  4. Hulliger, F. (1963). Electrical properties of pyrite-type and related compounds with zero spin moment. Nature, 200, pp. 1064 -1065.
     Google Scholar
  5. de Jong M, Chen W, Notestine R, Persson K, Ceder G, Jain A, Asta M, Gamst A. A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-nary Inorganic Polycrystalline Compounds. Scientific Reports 6: 34256 (2016) | doi:10.1038/srep34256.
     Google Scholar
  6. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., Fabris, S., Fratesi, G., De Gironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., & Wentzcovitch, R.M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 21395502.
     Google Scholar
  7. Perdew, J.P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77 (18), 3865–3868.
     Google Scholar
  8. H. J. Monkhorst and J. D. Pack, Phys. Rev. B13, 5188 (1976).
     Google Scholar
  9. F.D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944).
     Google Scholar
  10. Baroni, S., De Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73, 515–562.
     Google Scholar
  11. K.H. Madsen and J. Singh Comput. Phys. Commun.,175, 67 (2006).
     Google Scholar
  12. Hill, R. (1952). The elastic behavior of a crystalline aggregate. Proceedings of the Physical Society, 65, 349 - 354.
     Google Scholar
  13. Born, M. (1940). On the stability of crystal lattices. Mathematical Proceedings of the Cambridge Philosophical Society, 36, 160-172.
     Google Scholar
  14. Bensalem S, Chegaar M, Maouche D and Bouhemadou A. Theoretical study of structural, elastic and thermodynamic properties of CZTX (X = S and Se) alloys. Journal of Alloys and Compounds. 2014; 589:137-142. http://dx.doi.org/10.1016/j. jallcom.2013.11.113.
     Google Scholar
  15. Guemou M, Abdiche A, Riane R and Khenata R. Ab initio study of the structural, electronic and optical properties of BAs and BN compounds and BNxAs1−x alloys. Physica B: Condensed Matter. 2014; 436:33-40. http://dx.doi.org/10.1016/j. physb.2013.11.030.
     Google Scholar
  16. Gao X, Jiang Y, Zhou R and Feng J. Stability and elastic properties of Y–C binary compounds investigated by first principles calculations. Journal of Alloys and Compounds. 2014; 587:819-826. http://dx.doi.org/10.1016/j.jallcom.2013.11.005.
     Google Scholar
  17. Zhang M, Yan H, Zhao Y and Wei Q. Mechanical properties and atomistic deformation mechanism of spinel-type BeP2N4. Computational Materials Science. 2014; 83:457-462. http:// dx.doi.org/10.1016/j.commatsci.2013.11.044.
     Google Scholar
  18. Wang S, Li JX, Du YL and Cui C. First-principles study on structural, electronic and elastic properties of graphenelike hexagonal Ti2C monolayer. Computational Materials Science. 2014; 83:290-293. http://dx.doi.org/10.1016/j. commatsci.2013.11.025.
     Google Scholar
  19. Feng LP, Li N, Yang MH and Liu ZT. Effect of pressure on elastic, mechanical and electronic properties of WSe2: a firstprinciples study. Materials Research Bulletin. 2014; 50:503508. http://dx.doi.org/10.1016/j.materresbull.2013.11.016.
     Google Scholar
  20. Bensalem S, Chegaar M, Maouche D and Bouhemadou A. Theoretical study of structural, elastic and thermodynamic properties of CZTX (X = S and Se) alloys. Journal of Alloys and Compounds. 2014; 589:137-142. http://dx.doi.org/10.1016/j. jallcom.2013.11.113.
     Google Scholar
  21. Kanchana V and Ram S. Electronic structure and mechanical properties of Sc3AC (A = Al, Ga, In, Tl) and Sc3BN (B = Al, In): Ab-initio study. Intermetallics. 2012; 23:39-48. http:// dx.doi.org/10.1016/j.intermet.2011.12.014.
     Google Scholar
  22. Greaves GN, Greer AL, Lakes RS and Rouxel T. Poisson’s ratio and modern materials. Nature Materials. 2011; 10:823-837. PMid:22020006. http://dx.doi.org/10.1038/nmat3134.
     Google Scholar
  23. Güler M and Güler E. Embedded atom method-based geometry optimization aspects of body-centered cubic metals. Chinese Physics Letters. 2013; 30(5):056201. http://dx.doi. org/10.1088/0256-307X/30/5/056201.
     Google Scholar
  24. Tariq, S., Ahmed, A., Saad, S., & Tariq, S. (2015). Structural, electronic and elastic properties of the cubic CaTiO under pressure: A DFT study. AIP Advances, 5 (7), 077111.
     Google Scholar
  25. Ustundag M, Aslan M and Yalcin BG. The first-principles study on physical properties and phase stability of Boron-V (BN, BP, BAs, BSb and BBi) compounds. Computational Materials Science. 2014; 81:471-477. http://dx.doi.org/10.1016/j. commatsci.2013.08.056.
     Google Scholar
  26. Güler, E., & Güler, M. (2014). Phase transition and elasticity of gallium arsenide under pressure. Materials Research, 17(5), 1268-1272.
     Google Scholar