##plugins.themes.bootstrap3.article.main##

The use of electronic charge and spins (spintronics) has been proposed for much better data storage. This class of material is believed to have excellent capability for data integrity, low dynamic power consumption and high-density storage that showcases excellent protection against data loss. The spintronic and related properties have been investigated on four newly proposed quaternary alloys (NbRhGeCo, NbRhGeCr, NbRhGeFe and NbRhGeNi) through the first-principles calculation method of the Density Functional Theory (DFT). Specifically, the phonon frequencies, elastic stabilities, and the electronic structure were systematically studied in the full Heusler structure. The results predict that NbRhGeFe and NbRhGeCr are elastically and structurally stable. Both NbRhGeFe and NbRhGeCo are half-metals with ferromagnetic character, but NbRhGeCo is unfortunately elastically unstable. NbRhGeCr and NbRhGeNi are non-magnetic metallic alloys in their spin channels.  All the results predict NbRhGeFe to be the only suitable among all the four alloys for spintronic application.

References

  1. H. Sato, M. Yamanouchi, K. Miura, S. Ikeda, H. D. Gan, K. Mizunuma, R. Koizumi, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 99, 042501 (2011).
     Google Scholar
  2. K. Song, S. C. Lee, and K. J. Lee, IEEE Trans. Magn. 50, 3400704 (2014).
     Google Scholar
  3. N.S. Kim et al., “Leakage current: Moore's law meets the static power”, Computer, vol. 36, pp. 68-75, 2003.
     Google Scholar
  4. C. Chappert, A. Fert and F. Nguyen Van Dau, “The emergence of spin electronics in data storage”, Nat. Mater., vol. 6, pp. 813-823, 2007.
     Google Scholar
  5. C.J. Lin et al., “45nm Low power CMOS logic compatible embedded STT MRAM utilizing a reverse-connection 1T/1MTJ cell”, Procs. Of IEDM, pp. 279-282, 2009.
     Google Scholar
  6. K. Tsuchida et al., “A 64Mb MRAM with clamped-reference and adequate-reference schemes”, Procs. of ISSCC, pp. 258-259, 2010.
     Google Scholar
  7. Groot, R.A.D.; Mueller, F.M.; Engen, P.G.V.; Buschow, K.H.J. New class of materials: Half-metallic ferromagnets.Phys. Rev. Lett. 1983, 50, 2024–2027.
     Google Scholar
  8. de Groot,RA.Half-metallic magnetism in the 1990s. Physica B1991; 172:45-50
     Google Scholar
  9. Zhang,Z and Satpathy,S. Electron states, magnetism, and the Verwey transition in magnetite.Phys Rev B1991; 44:13319-31.
     Google Scholar
  10. van Leuken,Hand de Groot,RA.Half-metallic antiferromagnets. Phys Rev Letter 1995;74:1171-3.
     Google Scholar
  11. Dedkov, YS, Rüdiger, U and Güntherodt,G. Evidence for the half-metallic ferromagnetic state of Fe3O4by spin-resolved photoelectron spectroscopy. Phys Rev B 2002; 65:064417.
     Google Scholar
  12. Kane, CLand Mele, EJ. Z2topological order and the quantum spin Hall effect. Phys Rev Lett 2005; 95:146802.
     Google Scholar
  13. König,M,Wiedmann, S and Brüne, C et al.Quantum spin Hall insulator state in huge quantum wells. Science2007; 318:766-70.
     Google Scholar
  14. Wang XL. Proposal for a new class of materials: spin gapless semiconductors. Phys Rev Lett 2008; 100: 156404.
     Google Scholar
  15. Wang XL, Dou SX and Zhang C. Zero-gap materials for future spintronics, electronics and optics. NPG Asia Mater 2010; 2: 31–8.
     Google Scholar
  16. Mak KF, Lee C and Hone J et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 2010; 105: 136805.
     Google Scholar
  17. Deng, Z, Jin,CQ and Liu, QQ et al.Li(Zn,Mn)As as a new generation ferromagnet based on a I–II–V semiconductor. Nat Commun2011; 2:422.
     Google Scholar
  18. Li XX, Wu, XJ and Li, ZY et al. Proposal of a general scheme to obtain room-temperature spin polarization in asymmetric antiferromagnetic semiconductors.Phys RevB2015;92:125202.
     Google Scholar
  19. Li, XX, Wu, XJ and Li, ZY et al.Bipolar magnetic semiconductors: a new class of spintronics materials. Nanoscale2012; 4:5680-5.
     Google Scholar
  20. Huang, PR, He, Y and Pal, HK et al. Prediction of switchable half semiconductor in d1transition metal dichalcogenidemonolayers.arXiv preprint2015, arXiv:1501.00760
     Google Scholar
  21. Datta, Das, Appl. Phys. Lett. 56 (1990) 665.
     Google Scholar
  22. Gregor, F.; Perter, K. Ternary semiconductors NiZrSn and CoZrBi with half-Heusler structure: A first-principles study. Phys. Rev. B. 2016, 94, 075203.
     Google Scholar
  23. Wang, X.T.; Cheng, Z.X.; Wang, W.H. L21 and XA Ordering Competition in Hafnium-Based Full-Heusler Alloys Hf2VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb). Materials 2017, 10, 1200. [CrossRef].
     Google Scholar
  24. Barman, C.K.; Alam, A. Topological phase transition in the ternary half-Heusler alloy ZrIrBi. Phys. Rev. B.2018, 97, 075302.
     Google Scholar
  25. Popoola, A. & Odusote, Yisau. (2019). The Properties of NbRhGe as High Temperature Thermoelectric Material. IOSR Journal of Applied Physics. 11. 51-56. 10.9790/4861 1104025156.
     Google Scholar
  26. Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C. et al. (2009) QUANTUMESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter.vol21 no. 39, pp. 395502.
     Google Scholar
  27. Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Physical Reviews A, 140, 1133–1138.
     Google Scholar
  28. Perdew J. P., Burke K and Ernzerhof M. (1996) Generalized Gradient Approximation Made Simple. Phys. Rev. Lett.vol77 no.7, pp. 3865.
     Google Scholar
  29. Monkhorst H. J and Pack J. D. (1976) Special points for Brillouin-zone integrations. Phys. Rev. B. vol 13 no. 12, pp. 5188.
     Google Scholar
  30. Murnaghan F.D. (1944) The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. U. S. A. vol 30 no. 9, pp. 244-247.
     Google Scholar
  31. Papaconstantopoulos, D.A., & Mehl, M.J. (2005). Tight Binding Method in Electronic Structure. Encyclopedia of Condensed Matter Physics, Elsevier B.V.
     Google Scholar
  32. Hill, R. (1952). The elastic behavior of a crystalline aggregate. Proceedings of the Physical Society, 65, 349 -354.
     Google Scholar
  33. Zener, C. (1948). Elasticity and inelasticity of metals. University of Chicago Press.
     Google Scholar
  34. Güler, E., & Güler, M. (2014). Phase transition and elasticity of gallium arsenide under pressure. Materials Research, 17(5), 1268-1272.
     Google Scholar
  35. Chen, X.Q., Niu, H., Li, D., & Li, Y. (2011). Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallic, 19(9), 1275-1281.
     Google Scholar
  36. Anderson, O. L. (1963). A simplified method for calculating the Debye temperature from elastic Constants. Journal of Physics and Chemistry of Solids, 24(7), 909-917.
     Google Scholar
  37. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1.
     Google Scholar
  38. Born, M. (1940). On the stability of crystal lattices. Mathematical Proceedings of the Cambridge Philosophical Society, 36, 160-172.
     Google Scholar
  39. Bensalem S, Chegaar M, Maouche D and Bouhemadou A. Theoretical study of structural, elastic and thermodynamic properties of CZTX (X = S and Se) alloys. Journal of Alloys and Compounds. 2014; 589:137-142. http://dx.doi.org/10.1016/j. jallcom.2013.11.113.
     Google Scholar
  40. Tariq, S., Ahmed, A., Saad, S., & Tariq, S. (2015). Structural, electronic and elastic properties of the cubic CaTiO under pressure: A DFT study. AIP Advances, 5 (7), 077111.
     Google Scholar
  41. Kanchana V and Ram S. Electronic structure and mechanical properties of Sc3AC (A = Al, Ga, In, Tl) and Sc3BN (B = Al, In): Ab-initio study. Intermetallics. 2012; 23:39-48. http://dx.doi.org/10.1016/j.intermet.2011.12.014.
     Google Scholar
  42. Ustundag M, Aslan M and Yalcin BG. The first-principles study on physical properties and phase stability of Boron-V (BN, BP, BAs, BSb and BBi) compounds. Computational Materials Science. 2014; 81:471-477. http://dx.doi.org/10.1016/j. commatsci.2013.08.056.
     Google Scholar
  43. Liu Z.T.Y, Gall D and Khare S.V. (2014). Electronic and bonding analysis of hardness in pyrite-typetransition-metal pernitrides. Phys. Rev. B, vol 90 no. 13, pp. 134102.
     Google Scholar
  44. Bensalem S, Chegaar M, Maouche D and Bouhemadou A. Theoretical study of structural, elastic and thermodynamic properties of CZTX (X = S and Se) alloys. Journal of Alloys and Compounds. 2014; 589:137-142. http://dx.doi.org/10.1016/j. jallcom.2013.11.113.
     Google Scholar
  45. Guemou M, Abdiche A, Riane R and Khenata R. Ab initio study of the structural, electronic and optical properties of BAs and BN compounds and BNxAs1−x alloys. Physica B: Condensed Matter. 2014; 436:33-40. http://dx.doi.org/10.1016/j. physb.2013.11.030.
     Google Scholar
  46. Gao X, Jiang Y, Zhou R and Feng J. Stability and elastic properties of Y–C binary compounds investigated by first principles calculations. Journal of Alloys and Compounds. 2014; 587:819-826. http://dx.doi.org/10.1016/j.jallcom.2013.11.005.
     Google Scholar
  47. Zhang M, Yan H, Zhao Y and Wei Q. Mechanical properties and atomistic deformation mechanism of spinel-type BeP2N4. Computational Materials Science. 2014; 83:457-462. http://dx.doi.org/10.1016/j.commatsci.2013.11.044.
     Google Scholar
  48. Wang S, Li JX, Du YL and Cui C. First-principles study on structural, electronic and elastic properties of graphenelike hexagonal Ti2C monolayer. Computational Materials Science. 2014; 83:290-293. http://dx.doi.org/10.1016/j. commatsci.2013.11.025.
     Google Scholar
  49. Feng LP, Li N, Yang MH and Liu ZT. Effect of pressure on elastic, mechanical and electronic properties of WSe2: a firstprinciples study. Materials Research Bulletin. 2014; 50:503508. http://dx.doi.org/10.1016/j.materresbull.2013.11.016.
     Google Scholar
  50. Greaves GN, Greer AL, Lakes RS and Rouxel T. Poisson’s ratio and modern materials. Nature Materials. 2011; 10:823-837. PMid:22020006. http://dx.doi.org/10.1038/nmat3134.
     Google Scholar
  51. Güler M and Güler E. Embedded atom method-based geometry optimization aspects of body-centered cubic metals. Chinese Physics Letters. 2013; 30(5):056201. http://dx.doi.org/10.1088/0256307X/30/5/056201.
     Google Scholar
  52. Chen, Q.; Wang, J.L. Structural, electronic, and magnetic properties of TMZn11O12 and TM2Zn10O12 clusters (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). Chem. Phys. Lett. 2009, 474, 336–341.
     Google Scholar