University of Tripoli, Libya.
* Corresponding author
The University of Jordan, Jordan.

Article Main Content

Thermoluminescence (TL) technique has been used to characterize and determine the dosimetric properties of natural sodium chloride (NaCl) salt extracted from the Seawater of the Mediterranean Sea. The TLD grade material was prepared by evaporation and annealing the powder obtained from the aqueous solution. The TL properties include the response to theb-irradiation dose and the effects resulting from annealing up to 700oC, heating rate and fading. The analysis involve using total Glow Curve Deconvolution (GCD) to separate the inherent overlapping TL-peaks and determine the TL characteristics and the trapping parameters using general order (GO)kinetics (activation energy, kinetic order, peak position of trap and the frequency factor). The GL-curves exhibit well defined TL-peaks around 140oC, 225oC and 380oC and response depending on the annealing temperature due to variations due to formation of the structural defects. A linear response was noticed over the delivered range of absorbed doses up to 4Gy. The fading results gave evidence that TL emission is due to a redistribution of trapping levels and indicate that the prominent TL-peak near 225oCis useful for TL-dosimetric applications.

References

  1. S.W.S. McKeever, Thermoluminescence of Solids (Cambridge University Press, Cambridge, 1985).
     Google Scholar
  2. R. Chen and W. S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific Publishing Co. Pte. Ltd., 1997).
     Google Scholar
  3. K.S.V. Nambi. Thermoluminescence; Its understanding and applications. (Instituti De EnergiaAtomica, Sao Paulo-Brazil, 1977).
     Google Scholar
  4. A.J. Bos, Materials, 10, 1357-1379 (2017)
     Google Scholar
  5. F. Agullo-Lopez, C.R.A Catlow and P. D. Townsend, Point Defects in Materials (London: Academic Press, 1988).
     Google Scholar
  6. S.V. Moharil, V.S. Kamavisdar, and B.T. Deshmukh, J. Phys. Status Solidi. A.Applied Research. 55(2), K617-K172(1979).
     Google Scholar
  7. A. Ortiz, S. Ramos-Bernal, T. Martinez, E. Cruz, G.F. Mosqueire, G. Sa'nchez-Mejorada, and A. Negro'n-Mendoza, App. Rad. and Isotopes. 63(5-6), 733-736(2005).
     Google Scholar
  8. J.A. Ademola, J. Rad. Research and Appl. Sciences, 10, 117-12(2017).
     Google Scholar
  9. D. Ekendahl, , & L. Judas, Radiation Prot. Dosim. 45, 36e44(2011).
     Google Scholar
  10. P. G. Hunter, N. A. Spooner, B. W. Smith & D. F. Creighton, 2012. Rad. Meas. 47, 820-824(2012).
     Google Scholar
  11. N. A. Spooner, B. W. Smith, D. F. Creighton, , D. G. Questiaux & P. G. Hunter, Rad. Meas. 47, 883-889(2012).
     Google Scholar
  12. G. Tanir, and M. H. B€olükdemir, Rad. Meas. 42, 1723-1726(2007).
     Google Scholar
  13. K. J. Thomsen, L. Bøtter-Jensen, , & A. S. Murray, Rad. Prot.Dosim. 101, 515-518(2002).
     Google Scholar
  14. F.J. Lopez, J.M. Cabrera and F. Argullo-Lopez, J. Phys.C: Solid State Phys. 12, 1221-1238(1979).
     Google Scholar
  15. C. E. May, and J. A. Partridge, J. Chem. Phys. 40, 1401–1409(1964).
     Google Scholar
  16. M. Maghrabi, J. AL-JUNDI and D.-E. ARAFAH, Rad. Prot.Dosim. 130(3):291-9(2008).
     Google Scholar
  17. M.Balarin, J. of Thermal Analysis. 17(2), 319(1979).
     Google Scholar
  18. G. Kitis, J.M. Gomez-Ros and J.W.N. Tuyn, J. Phys. D: Appl. Phys. 31, 2636-2641(1998).
     Google Scholar
  19. K.V.R. Murthy, S. P. Pallavi, G. Rahul, Y. S. Patel, A. S. Sai Prasad, D. Elangovan, Radiation Protection Dosimetry, 119(1-4), 350-352(2006)
     Google Scholar
  20. G.S. Polymeris, G. Kitis, N.G.Kiyak, I. Sfamba, B. Subedi, and V. Pagonis, Appl.Radi. And Isotop.9, 1255 –1262(2011).
     Google Scholar
  21. R. Chen, S.A.A.Winer, J. Appl. Phys. 41(13), 5227-5232(1970).
     Google Scholar


Similar Articles

11-20 of 74

You may also start an advanced similarity search for this article.