Cosmic Background
##plugins.themes.bootstrap3.article.main##
A possibility is that in cosmic background, primordial photon lattice where emerges a way to mass conservation, a photon was disturbed to create a spin then lead to its neighbors consecutively avalanching -- CMB -- into this a small ripple, which inverse spin directions pointing to a world was made of matter or antimatter whichever is parity violation; now cosmos was like an expanding hole -- an isotropic gravity field -- in photon lattice that influenced on everything, so inertia will be partly clarified.
References
-
Penzias A & Wilson R (1965). A Measurement of Excess Antenna Temperature at 4080 Mc/s. The Astrophysical Journal 142, 419-421.
Google Scholar
1
-
Lemaître G (1931). The Beginning of the World from the Point of View of Quantum Theory. Nature127 (3210): 706.
Google Scholar
2
-
Bondi H & Gold T (1948). The Steady-State Theory of the Expanding Universe, MNRAS108252–270.
Google Scholar
3
-
Castelvecchi D (2020). Hints of twisted light offer clues to dark energy’s nature. Nature 588, 21.
Google Scholar
4
-
Narlikar J & Wickramasinghe N (1967). Microwave Background in a Steady State Universe. Nature216 (5110): 43–44.
Google Scholar
5
-
Lee T & Yang C (1956). Question of Parity Conservation in Weak Interactions. Phys. Rev. 104 (1): 254–258.
Google Scholar
6
-
Galileo G (1632). Dialogue Concerning the Two Chief World Systems
Google Scholar
7
-
Long A & Sedley D (1987). Epicureanism: The principals of conservation. Cambridge University Press. pp. 25–26.
Google Scholar
8
-
Lee C et al (2021). Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature 589, 230–235.
Google Scholar
9
-
de Bernardis P et al (2000). A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature 404 (6781): 955–959.
Google Scholar
10
-
Madison K et al (2000). Vortex Formation in a Stirred Bose-Einstein Condensate. Phys. Rev. Lett. 84, 806.
Google Scholar
11
-
Zwierlein M et al (2005). Vortices and superfluidity in a strongly interacting Fermi gas. Nature 435, 1047–1051.
Google Scholar
12
-
Minami Y & Komatsu E (2020). New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data. Phys. Rev. Lett. 125, 221301.
Google Scholar
13
-
Kogut A et al (1993). Dipole Anisotropy in the COBE Differential Microwave Radiometers First-Year Sky Maps. Astrophysical Journal419: 1–6.
Google Scholar
14
-
Aghanim N et al (2013). Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppursimuove. A&A 571 (27): A27.
Google Scholar
15
-
Nemiroff R (2009). CMBR Dipole: Speeding Through the Universe. NASA 090906.
Google Scholar
16
-
Ade P et al (2015). Planck 2015 results. XIII. Cosmological parameters. A&A 594: A13.
Google Scholar
17
-
Kohli I & Michael C (2016). Mathematical issues in eternal inflation. arXiv1408.2249.
Google Scholar
18
-
Hubble E (1929). A relation between distance and radial velocity among extra-galactic nebulae, PNAS 15 (3) 168-173.
Google Scholar
19
-
Adam G et al (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astronomical Journal 116(3): 1009–38.
Google Scholar
20
-
Agakishiev H et al (2011). Observation of the antimatter helium-4 nucleus. Nature 473 (7347): 353–356.
Google Scholar
21
-
Anderson C (1932). The Apparent Existence of Easily Deflectable Positives. Science 76 (1967): 238–9.
Google Scholar
22
-
Abe K et al (2012). Search for Antihelium with the BESS-Polar Spectrometer. Phys. Rev. Lett. 108 (13): 131301.
Google Scholar
23
-
Wu C et al (1957). Experimental Test of Parity Conservation in Beta Decay. Phys. Rev. 105:1413–1415.
Google Scholar
24
-
Aail R et al (2014). "Measurement of CP asymmetry in D0→K+K− and D0→π+π− decays". JHEP 7: 41.
Google Scholar
25
-
Alpher R, Bethe H & Gamow G (1948). The Origin of Chemical Elements. Phys. Rev. 73 (7): 803–804.
Google Scholar
26
-
Burbidge E, Burbidge G, Fowler W & Hoyle F (1957). Synthesis of the Elements in Stars. Rev. Mod. Phys. 29 (4): 547–650.
Google Scholar
27
-
Mao J (2017). The Periodic Table Possible Coincided with an Unfolded Shape of Atomic Nuclei. Applied Physics Research 9 (6):47.
Google Scholar
28
-
Newton I (1687). Philosophiae Naturalis Principia Mathematica, Roy. Soc.
Google Scholar
29
-
Einstein A (1916). Grundlage der allge meinen Relativitats theorie. Ann. Phys., Lpz. (4) 49, 769-822.
Google Scholar
30
-
Hermann B & Joseph S (1996). The Lense–Thirring Effect and Mach's Principle. Physics Letters A 228 (3): 121.
Google Scholar
31
-
Julian B & Herbert P (1995). Mach's principle: from Newton's bucket to quantum gravity. Boston: Birkhäuser. p. 106.
Google Scholar
32
-
John L (1785). "Of the Rotatory Motion of a Body of any Form whatever" Philosophical Transactions. Royal Society, London. LXXV (I): 311–332.
Google Scholar
33
-
Mach E (1883). The Science of Mechanics. Brockhaus, Leipzig.
Google Scholar
34
-
Eric G et al (1990). Testing the equivalence principle in the field of the Earth: Particle physics at masses below 1μeV? Phys. Rev. D 42: 3267–3292.
Google Scholar
35
-
Has I, Miclaus S & Has A (2021). Explaining the Nature of the Mass m of Submicroparticles and the Phenomenon of Mass Variation with Velocity V in Ether. EJ-PHYSICS2021.3.1.48.
Google Scholar
36
-
van der Waals (1873). Over de Continuiteit van den Gas- en Vloeistoftoestand. PhD thesis, Leiden, The Netherlands.
Google Scholar
37
-
Fermi E (1934). VersucheinerTheorie der β-Strahlen. I. ZeitschriftfürPhysik A. 88 (3–4): 161–177.
Google Scholar
38
-
Tang K et al (2013). Observational evidences for the speed of the gravity based on the Earth tide. Chinese Science Bulletin 58 (4-5): 474-77.
Google Scholar
39
-
Grahn P, Annila A &Kolehmainen E (2018). On the carrier of inertia. AIP Advances 8, 035028.
Google Scholar
40
-
Faraday M (1850). On the Possible Relation of Gravity to Electricity. Abstracts of the Papers Communicated to the Royal Society of London 5: 994–995.
Google Scholar
41
Most read articles by the same author(s)
-
Jianping Mao,
Photon Structure and Behavior , European Journal of Applied Physics: Vol. 3 No. 5 (2021)