TL Characteristics and Dosimetric Aspects of Mg-Doped ZnO
##plugins.themes.bootstrap3.article.main##
Dosimetry characterization and the evaluation of kinetics parameters of trapping states of Mg-doped ZnO phosphors synthesized by Sol-Gel technique. The thermoluminescence response of Mg-doped ZnO samples showed a linear response when exposed to X-ray radiation and the optimum annealing condition was 400oC/4h for the three concentrations. A broad-shaped TL glow curve with an upper bound of 270 °C, which shifts to lower temperatures with increasing dose, indicating that general order (GO) kinetics thermoluminescence processes are involved. We conclude that the ZnO doped Mg phosphors under study are promises to develop dosimeters for high radiation dose measurements. Kinetic parameters, such as activation energy (E), frequency factor (s), and order of kinematic order (b), were estimated by the Glow Curve Deconvolution (GCD) method. ZnO:Mg phosphor has a great potential as a dosimeter for monitoring in the fields of ionizing radiation.
References
-
C. Furetta, Handbook of Thermoluminescence; World Scientific Pub: Singapore, (2003); ISBN: 10: 9812382402.
Google Scholar
1
-
M.Y. William; S. Shionoya; Yamamoto, H. Practical Applications of Phosphors; CRC Press: Boca Raton, FL, USA, (2007); ISBN 9781420043693. C. Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, and M. Miller, “Rotation, scale, and translation resilient public watermarking for images”, IEEE Trans. Image Process., vol. 10, no. 5, pp. 767-782, May 2001.
Google Scholar
2
-
M. Oberhofer, Applied Thermoluminescence Dosimetry; Adam Hilger: Bristol, TN, USA, (1979); ISBN 0852745443.
Google Scholar
3
-
R. Chen; S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomena; World Scientific: Singapore, (1997); ISBN 0810222955.
Google Scholar
4
-
S.W.S. McKeever, Thermoluminescence of Solids; Cambridge University Press: Cambridge, UK, (1988); ISBN 0521368111.
Google Scholar
5
-
V. Pagonis; G. Kitis; C. Furetta, Numerical and Practical Exercises in Thermoluminescence; Springer: New York, NY, USA, (2006); ISBN 0387260633.
Google Scholar
6
-
R. Chen; V. Pagonis, Thermally and Optically Stimulated Luminescence Simulation Approach; JohnWiley: Chichester, UK, (2011); ISBN 9780470749272.
Google Scholar
7
-
V. Etacheri. R. Roshan, and V. Kumar, "Mg-Doped ZnO Nanoparticles for Efficient Sunlight-Driven Photocatalysis "ACS Appl. Mater. Interfaces 4, 2717 (2012).
Google Scholar
8
-
U. Ozgur, Y. I. Alivov, C. Liu. A. Teke. M. A. Reshchikov. S. Dogan. V. Avrutin S. J. Cho, and H. Morkoc." A Comprehensive review of ZnO materials and Devices" J. Appl Phys. 98, 041301 (2005).
Google Scholar
9
-
E. R. Leite. A. P. Maciel. I. T. Weber. P. N. Lisboa-Filho. E. Longe. C. O. Paiva-Santos. A. V. C. Andrade. C. A Pakoscimas. Y. Maniette, and W. H. Schreiner. Development of Metal Oxide Nanoparticles with High Stability against Particle Growth using a Metastable Solid solution" Adv. Mater. 14. 905 (2002).
Google Scholar
10
-
H.C. Hsu.; C. Y. Wu; H.M. Cheng; W.F. Hsieh, "Band gap engineering and stimulated emission of ZnMgO nanowires ". Appl. Phys. Lett. 89, (2006).
Google Scholar
11
-
J. Peng, J. Guo; S. Ding; Q. Xu; H. Li; X. Tan; X. Zhao, " Preparation and Properties of Ternary ZnMgO Nanowires" Rare Met. 30, 292-297 (2011).
Google Scholar
12
-
H. Zhuang; J. Wang; H. Liu; J. Li; P. Xu, "Structural and optical Properties of ZnO Nanowires Doped with Magnesium" Acta Phys. Pol. A. 119(6), 819-823 (2011).
Google Scholar
13
-
J.Y. Cho; I.K. Kim; I.O. Jung; J.H. Mooon; J. H. Kim, " Effects of Mg doping concentration on the band gap of ZnO/ MgxZn1−xO multilayer thin films prepared using pulsed laser deposition method" J. Electrocerom. 23, 442-446 (2009).
Google Scholar
14
-
Abeer. Z. Abraheem and Y.A. Abdulla. Preparation and Characterization of the Thermoluminescence Properties of Mg-doped ZnO. IJSBAR. 49(1), 133-142 (2020).
Google Scholar
15
-
A. Burlacu, V.V. Ursaki, V.A. Skuratov, et al. The impact of morphology upon the radiation hardness of ZnO layers. Nanotechnology 19:215714. (2008).
Google Scholar
16
-
C. Cruz-Va´zquez, S.E. Burruel-Ibarra, H. Grijalva-Monteverde, et al. Thermally and optically stimulated luminescence of new ZnO nanophosphors exposed to beta particle irradiation. Radiat. Eff. Defects Solids 162:737–743. (2007).
Google Scholar
17
-
C. E. Secu, M. Sima, Photoluminescence and thermoluminescence of ZnO nano-needle arrays and films. Opt Mater (Amst) 31:876–880. (2009).
Google Scholar
18
-
D. Sahu, B.S. Acharya, B.P. Bagm et al. Probing the surface states in nanoZnO powder synthesized by sonication method: photo and thermo-luminescence studies. J Lumin 130:1371–1378. (2010).
Google Scholar
19
-
P.P. Pal, J. Manam, Evaluation of kinetics parameters in the X-irradiated TSL studies of RE3?-doped (RE = Eu, Tb) ZnO nanorods for dosimetric applications. Radiat. Phys. Chem 88:7–13. (2013).
Google Scholar
20
-
A.J. Reddy, M.K. Kokila, H. Nagabhushana, et al. Structural, EPR, photo and thermoluminescence properties of ZnO: Fe nanoparticles. Mater Chem. Phys 133:876–883. (2012).
Google Scholar
21
-
J.T. Randall; M. H. F. Wilkins, The Phosphorescence of Various Solids. Proc. R. Soc. A Math. Phys. Eng. Sci. (1945), 184, 347–364.
Google Scholar
22
-
G.F.J. Garlick; A.F. Gibson, The Electron Trap Mechanism of Luminescence in Sulphide and Silicate Phosphors. Proc. Phys. Soc. (1948), 60, 574–590.
Google Scholar
23
-
M. S. Rasheedy, On the general-order kinetics of the thermoluminescence glow peak. J. Phys. Condens. Matter. (1993), 5, 633–636.
Google Scholar
24
-
P. R. Gonzales, C. Furetta, B. E. Calvo, M. I. Gaso, E. Cruz Zaragoza, "Dosimetric characterization of a new preparation of BaSO4 activated by Eu ions " Nucl. Instrum. Methods in Phys. Res. Sect., B260 .685-692. (2007).
Google Scholar
25
-
M.H.A. Mhareb, M. Maghrabi, Y.S.M. Alajerami, S. Hashim, S.K. Ghoshal, M.A. Saleh, K.M. Abushab. Glow curve analysis of glassy system dosimeter subjected to photon and electron irradiations. Results in Physics 10 (2018) 772–776.
Google Scholar
26
-
F. Khamis and D. -E. Arafah. Improved Thermoluminescence Properties of Natural NaCl Salt Extracted from Mediterranean Sea Water Relevant to Radiation Dosimetry. EJ-Appl. Phys. 2020.
Google Scholar
27