##plugins.themes.bootstrap3.article.main##

The sciences have evolved around elastic collisions although most collisions are inelastic. Elastic collisions allow for simpler mathematical modelling, that may not be particularly suitable for cosmology.

Inelastic collisions create photons. This has led to consideration of an ensemble of inelastic collisions producing CMB. This will further lead to brief discussions concerning the nature of dark matter, and dark energy. This will then be followed by a simpler analogy concerning the creation of Hawking’s radiation.

A consequence of collisions being inelastic is that as a mathematical contrivance, entropy may only be an approximation when applied to the real world. And this fits well with this author’s “New Thermodynamics”.

References

  1. Mayhew, K.W., “New Thermodynamics: Inelastic collisions, blackbody radiation, entropy and light” E-J Phys., Vol 2 (6) 2020 pp. 1-6.
     Google Scholar
  2. Mayhew, K.W., A new perspective for kinetic theory and heat capacity” Prog. In Phys. 13, 3, 2017 pp. 166-173.
     Google Scholar
  3. Mayhew, K.W., “Kinetic theory: Flatlining of polyatomic gases:” Prog. In Phys. 14, 2 2018 pp. 75-79.
     Google Scholar
  4. Mayhew, K.W., “New thermodynamics: Untangling entropy’s web, Self-published 2020.
     Google Scholar
  5. Mayhew K.W., “Illusions of Elastic Collisions in the Sciences: An Essay”, EJERS, Vol. 5, 1, (2020) pp. 87-90.
     Google Scholar
  6. Carroll, S., “From eternity to here: The quest for the ultimate theory of time” Penguin group 375 Hudson street New York New York, 2010.
     Google Scholar
  7. Hawking Stephen “A brief history of time” Bantam Dell Publishing 1988.
     Google Scholar
  8. Atkins, P. “Four laws that drive the universe” Oxford University Press Oxford England 2007.
     Google Scholar
  9. Ben-Naim, Arieh, “Time’s Arrow (?): The timeless nature of entropy and the second law of thermodynamics Lulu Publishing 2018.
     Google Scholar
  10. Ben-Naim, Arieh, “Entropy and the second law: Interpretation and misss-interpretation” World Scientific Publishing Singapore 2012.
     Google Scholar
  11. Wikipedia: https://en.wikipedia.org/wiki/Talk%3AHistory_of_entropy, Nov. 3, 2020.
     Google Scholar
  12. Mayhew, K.W., “Entropy: An ill-conceived mathematical contrivance?, Phys. Essays, 28, 3 (2015), pp. 352-357.
     Google Scholar
  13. Mayhew, K.W., “New Thermodynamics: Reversibility and Free Energy”, Hadronic Journal, Vol 43, 1, 2020 pp. 51-60.
     Google Scholar
  14. Mayhew, K.W. “Resolving problematic thermodynamics” Hadronic Journal, Vol 41, 2018 pp. 257-272.
     Google Scholar
  15. Mayhew K.W., “New Thermodynamics: Inefficiency of a Piston-cylinder”, EJERS, Vol. 5, 2, (2020), pp. 187-191.
     Google Scholar
  16. Mayhew. K. W., “New Thermodynamics: Reversibility, Entropy and Adiabatic Processes”, E-J Phys. Vol 2 (3) 2020 pp.1-6.
     Google Scholar
  17. Aguirre, J. and Hernandez, H. (2020). Entropy: A Physical Entity or a Mathematical Construct? ForsChem Research Reports, 5, 2020-10. doi: 10.13140/RG.2.2.34938.93124.
     Google Scholar
  18. Hatsopoulos, G., N. Beretta, G. P., “Where is the entropy challenge?” AIP Conference Proceedings 1033, 34 (2008); https://doi.org/10.1063/1.2979057.
     Google Scholar
  19. Mayhew K.W., “Second law and lost work”. Phys. Essays, 28, 1 (2015) pp. 152-155.
     Google Scholar
  20. Capek, V., Sheehan, D. P., “Challenges to the Second law of thermodynamics: Theory and Experiment” Springer press, Neatherlands, 2005.
     Google Scholar
  21. Dunning-Davis, J, Norman R.L. “Truth in Paradigms” Standing Dead Publications, 2017.
     Google Scholar
  22. Mayhew K.W., “New Thermodynamics: Temperature, Sun’s Insolation, Thermal, and Blackbody Radiation” EJERS, Vol. 5, 3(2020) pp. 264-270.
     Google Scholar
  23. Eisberg, R., Resnick, R., “Quantum Physics”, John Wiley & Sons Toronto 1974.
     Google Scholar
  24. Penzias, A. A.; Wilson, R. W. "A Measurement of Excess Antenna Temperature at 4080 Mc/s". The Astro-Phys. J. 142, 1 (1965) 419–421.
     Google Scholar
  25. Wikipedia: https://en.wikipedia.org/wiki/Cosmic_microwave_background, Nov. 4, 2020.
     Google Scholar
  26. https://sci.esa.int/web/planck/-/60499-from-an-almost-perfect-universe-to-the-best-of-both-worlds.
     Google Scholar
  27. Website: https://wmap.gsfc.nasa.gov/universe/bb_tests_cmb.html, Nov., 2 2020.
     Google Scholar
  28. Website: https://www.cosmos.esa.int/web/planck/publications, Nov. 3, 2020.
     Google Scholar
  29. Website: https://www.aanda.org/articles/aa/abs/2020/09/aa33880-18/aa33880-18.html Nov., 2,2020.
     Google Scholar
  30. Anthony C. "CMB anisotropy science: A review". Proceedings of the International Astronomical Union. 8: (2012) 42–52.
     Google Scholar
  31. Website: https://en.wikipedia.org/wiki/Axis_of_evil_(cosmology) Nov., 2, 2020.
     Google Scholar
  32. Website: https://www.sciencealert.com/the-spin-directions-of-spiral-galaxies-suggest-the-axis-of-evil-is-real Nov., 2, 2020.
     Google Scholar
  33. Website: https://www.k-state.edu/media/newsreleases/2020-06/study-suggests-universe-has-defined-structure.html Nov., 2, 2020.
     Google Scholar
  34. Website: https://www.forbes.com/sites/startswithabang/2018/06/22/why-cosmologys-expanding-universe-controversy-is-an-even-bigger-problem-than-you-realize/?sh=25153b62381e Nov. 2, 2020.
     Google Scholar
  35. Website: https://www.sciencemag.org/news/2019/07/debate-intensifies-over-speed-expanding-universe. Nov. 2, 2020.
     Google Scholar
  36. Website: https://www.scientificamerican.com/article/expanding-universe-slows-then-speeds/, Nov.2, 2020.
     Google Scholar
  37. Wikipedia: https://en.wikipedia.org/wiki/Hawking_radiation Nov., 10, 2020.
     Google Scholar
  38. Mayhew, K.W., “Energetics of Nucleation”, Phys. Essays, 17, 4 (2004), pp. 476-494.
     Google Scholar
  39. Wikipedia: https://en.wikipedia.org/wiki/Elastic_collision Nov., 11, 2020.
     Google Scholar
  40. Website: https://brilliant.org/wiki/analyzing-elastic-collisions/ Nov., 11, 2020.
     Google Scholar
  41. Mayhew K.W., “New thermodynamics: Rethinking the Science of climate change”, EJERS, Vol. 5, 5, (2020), pp. 559-564.
     Google Scholar