Gravity Without Newton’s Gravitational Constant and No Knowledge of the Mass Size


In this paper, we show that the Schwarzschild radius can be extracted easily from any gravitationally-linked phenomena without having knowledge of Newton’s gravitational constant or the mass size of the gravitational object. Further, the Schwarzschild radius can be used to predict a long series of gravity phenomena accurately, again without knowledge of Newton’s gravitational constant and also without knowledge of the size of the mass, although this may seem surprising at first. Hidden within the Schwarzschild radius are the more fundamental mass of the gravitational object, the Planck length, which we will assert contain the secret essence related to gravity, in addition to the speed of light (the speed of gravity). This seems to support that gravity is quantized, even at the cosmological scale, and this quantization is directly linked to the Planck units. This also supports our view that Newton’s gravitational constant is a universal composite constant of the form G = l2pc3/h , rather than relying on the Planck units as a function of G. This does not mean that Newton’s gravitational constant is not a universal constant, but rather that it is a composite universal constant, which depends on the Planck length, the speed of light, and the Planck constant. This is, to our knowledge, the first paper1 that shows how a long series of major gravity predictions and measurements can be completed without any knowledge of the mass size of the object, or Newton’s gravitational constant. At minimum, we think it provides an interesting new angle for evaluating existing theories of gravitation.

  1. Haug EG. Gravity without Newton’s gravitational constant and no knowledge of mass size., 2018. URL  |   Google Scholar
  2. Lorentz HA. Simplified theory of electrical and optical phenomena in moving systems. Proc. Acad. Scientific, Amsterdam, 1899;1.  |   Google Scholar
  3. Haug EG. A new full relativistic escape velocity and a new Hubble related equation for the universe. Physics Essays, 2021a;34(4):502. URL  |   Google Scholar
  4. Pound RV and Rebka Jr GA. Gravitational red-shift in nuclear resonance. Physical Review Letters, 19599;3(9):439–441. URL  |   Google Scholar
  5. Schwarzschild K. U¨ ber das gravitationsfeld eines massenpunktes nach der Einsteinschen theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik, 1916a, p. 189.  |   Google Scholar
  6. Schwarzschild K. ¨uber das gravitationsfeld einer kugel aus inkompressibler flussigkeit nach der Einsteinschen theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik, 1916b, p. 424.  |   Google Scholar
  7. Einstein A. N¨aherungsweise integration der feldgleichungen der gravitation. Sitzungsberichte der K¨oniglich Preussischen Akademie der Wissenschaften Berlin, 1916.  |   Google Scholar
  8. Augousti AT and Radosz A. An observation on the congruence of the escape velocity in classical mechanics and general relativity in a Schwarzschild metric. European Journal of Physics, 2006;376:331–335. URL  |   Google Scholar
  9. Michell J. On the means of discovering the distance, magnitude &c.of the fixed stars, in consequence of the diminution of the velocity of their light, in case such a diminution should be found to take place in any of them, and such other data should be procured from observations. Philosophical Transactions of the Royal Society, 1784;74.  |   Google Scholar
  10. Haug EG. The gravitational constant and the Planck units. A simplification of the quantum realm. Physics Essays, 2016a;29(4):558. URL  |   Google Scholar
  11. Haug EG. Planck quantization of Newton and Einstein gravitation for Planck masses and smaller size objects. 2016b 1610.0328 2016.  |   Google Scholar
  12. Planck M. Natuerliche Masseinheiten. Der K¨oniglich Preussischen Akademie Der Wissenschaften, 1899.  |   Google Scholar
  13. Planck M. Vorlesungen ¨uber die Theorie der W¨armestrahlung. Leipzig: J.A. Barth, p. 163, see also the English translation “The Theory of Radiation” (1959) Dover, 1906.  |   Google Scholar
  14. Cahill K. The gravitational constant. Lettere al Nuovo Cimento, 1984a;39:181.  |   Google Scholar
  15. Cahill K. Tetrads, broken symmetries, and the gravitational constant. Zeitschrift F¨ur Physik C Particles and Fields, 1984b;23:353.  |   Google Scholar
  16. McCulloch ME. Gravity from the uncertainty principle. Astrophysics and Space Science, 2014;34(2):957. URL  |   Google Scholar
  17. McCulloch ME. Quantised inertia from relativity and the uncertainty principle. Europhysics Letters (EPL), 2016;115(6):69001. URL  |   Google Scholar
  18. Cohen ER. Fundamental Physical Constants, in the book Gravitational Measurements, Fundamental Metrology and Constants. Edited by Sabbata, and Melniko, V. N., Netherland, Kluwer Academic Publishers, 1987.  |   Google Scholar
  19. Haug EG. Can the Planck length be found independent of big G ? Applied Physics Research, 2017;9(6):58. URL  |   Google Scholar
  20. Haug EG. Finding the Planck length multiplied by the speed of light without any knowledge of G, c, or h, using a newton force spring. Journal Physics Communication, 2020a;4:075001. URL  |   Google Scholar
  21. Haug EG. Planck units measured totally independently of big G. Open Journal of Microphysics, 2022a;12:55. URL  |   Google Scholar
  22. Haug EG. Rethinking the foundation of physics and its relation to quantum gravity and quantum probabilities: Unification of gravity and quantum mechanics., 2020b. URL  |   Google Scholar
  23. Haug EG. Quantum Gravity Hidden In Newton Gravity And How To Unify It With Quantum Mechanics. in the book: The Origin of Gravity from the First Principles, Editor Volodymyr Krasnoholovets, NOVA Publishing, New York, 2021b.  |   Google Scholar
  24. Haug EG. Unified quantum gravity field equation describing the universe from the smallest to the cosmological scales. Physics Essays, 2022b;5:61. URL  |   Google Scholar
  25. Haug EG. God time = Planck time. Hal archive, 2022b. URL h  |   Google Scholar
  26. Haug EG. Progress on composite view of Newtonian gravitational constant and its link to the Planck scale. Universe, 2022c;8(454). URL  |   Google Scholar
  27. Haug EG. Measurements of the Planck length from a ball-clock without knowledge of Newton’s gravitational constant G or the Planck constant.  |   Google Scholar
  28. Kibble BP. A measurement of the gyromagnetic ratio of the proton by the strong field method. Atomic Masses and Fundamental Constants, 1975;5:545.  |   Google Scholar
  29. Stock M. The watt balance: determination of the Planck constant and redefinition of the kilogram. Philosophical Transactions of the Royal Society, 2011;369:3936–3953. URL  |   Google Scholar
  30. Robinson IA and Schlamminger S. The watt or Kibble balance: a technique for implementing the new si definition of the unit of mass. Metrologia, 2016;53(5):A46. URL  |   Google Scholar
  31. Haug EG. The Planck constant and its relation to the Compton frequency. 2021b. URL  |   Google Scholar
  32. Newton I. Philosophiae Naturalis Principia Mathematica. London, Jussu Societatis Regiae ac Typis Josephi Streater, 1686.  |   Google Scholar
  33. Cavendish H. Experiments to determine the density of the earth. Philosophical Transactions of the Royal Society of London, (part II), 88, 1798.  |   Google Scholar
  34. Clotfelter BE. The Cavendish experiment as Cavendish knew it. American Journal of Physics, 1987;55:210. URL  |   Google Scholar
  35. Hodges L. The Michelle-Cavendish experiment. Web Archive, 1998. URL∼lhodges/Michell.htm.  |   Google Scholar

How to Cite

Haug, E. G. (2022). Gravity Without Newton’s Gravitational Constant and No Knowledge of the Mass Size. European Journal of Applied Physics, 4(6), 4–10.

Search Panel

 Espen Gaarder Haug
 Google Scholar |   EJPHYSICS Journal