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I. INTRODUCTION 
Entropy (S) is a term that was coined by Rudolf Clausius. 

Strangely, few can agree upon its true meaning after nearly 
170 years of use. This author has previously asserted that 
entropy is nothing short of a mathematical contrivance [1]. 

Adiabatic is derived from the Greek word adiabatikos, 
which means that “heat is not able to go through” [2]. 
Adiabatic processes imply that the systems are either 100% 
thermally insulated, or that the processes are too rapid for 
thermal energy to be exchanged. In either case, the result is 
that in an adiabatic process, a system does not exchange 
energy with its surroundings.   

Traditional theory starts with a first law equation for an 
expanding gas, such as: 

 
𝑑𝑄 = 𝑑𝐸 + 𝑃𝑑𝑉         (1) 
 

where dQ is the energy input, dE is the change to the 
system’s internal energy, and PdV is the work done in an 
expanding system.  

For an adiabatic process dQ = 0, therefore eq (1) 
becomes: 

0 = 𝑑𝐸 + 𝑃𝑑𝑉         (2) 
 

In terms of the system’s isometric molar specific heat (Cv) 
and the number of moles (n), eq. (2) becomes: 

 
𝑛𝐶!𝑑𝑇 + 𝑃𝑑𝑉 = 0      (3) 
 

 For n moles, the ideal gas law gives: P=nRT/V. 
Substituting into eq. (3):  

𝑛𝐶!𝑑𝑇 +
"#$%&
&

= 0   (4)  

Dividing through by temperature (T), eq. (4) then 
becomes: 

𝑛𝐶!𝑑𝑇/𝑇 +
"#%&
&

= 0  (5) 

II. CHALLENGING (4) AND  (5) 
This author has stated that eq. (1) lacks the clarity 

concerning onto what work is done [3]-[9]. Clarity 
is obtained by rewriting eq (1) as: 

  
𝑑𝑄'" = 𝑑𝐸()( + (𝑃𝑑𝑉)*+,      (6) 

 
where dQin is the energy input, dEsys is the change to the 

system’s total energy, and (PdV)atm is the “lost work” done by 
an expanding system onto the surrounding atmosphere. 

Unfortunately, eq. (3), eq. (4) and eq. (5) are written as if 
lost work can be expressed in terms of the expanding 
system’s parameters. This author has previously discussed 
the problematic issues with writing lost work in terms of the 
expanding system’s own parameters. Hence, the clarity of eq. 
(6) is required [3]-[9]. 

 For an adiabatic process there is no energy in (dQin =0). 
This leads to: 

 
(𝑛𝐶!𝑑𝑇)()( = −(𝑃𝑑𝑉)*+,    (7) 
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If a system undergoes adiabatic expansion, it performs lost 
work. Therefore, the expanding system’s temperature 
decreases when the system’s thermal energy drives the 
process.  

Strangely, eq. (4) and (5) are written in terms of the process 
being isothermal, which according to eq. (7) is an 
impossibility. If most adiabatic processes cannot be 
isothermal, then eq. (4) and (5) are illogical, i.e., describing 
an adiabatic isothermal expanding system as a general 
process is void of rationality.  

If equations (3) through (5) are irrational, then the rest of 
what traditionally is  accepted concerning adiabatic processes 
becomes questionable. This includes the following accepted 
adiabatic process relation [10]: 

 
𝑃𝑑𝑉 = − &%-

.
                (8) 

 
Eq. 8 can be further broken down by applying the adiabatic 

index: 𝛾 = 𝐶//𝐶!, which leads to:  
 
𝑃𝑑𝑉 = −𝐶!𝑉𝑑𝑃/𝐶/           (9) 

 
  Defining an adiabatic process in terms of eq. (4) through 

eq. (9) is problematic, if not a completely illogical prospect.  

III. EXOTHERMIC ADIABATIC PROCESS 
Is there an adiabatic process that can be rationalized?  Not 

if the energy that drives the process comes from the system’s 
internal thermal energy (heat). However, if the energy that 
drives the process is internal to that expanding system but is 
not thermal energy, then an adiabatic expanding process is 
conceivable.  

Imagine that an exothermic chemical reaction produces 
thermal energy (dU) in System 1, as shown in Fig. 1. The 
energy from this reaction then drives the system’s expansion. 
For such an exothermic reaction in a fully insulated rigid, 
expandable, experimental apparatus: 

 
𝑑𝑈 = −[(𝑛𝐶!𝑑𝑇)()(0 + (𝑃𝑑𝑉)*+,]     (10) 

 
In this case,	𝑑𝑇 ↑, 𝑑𝑈 ↓, dET = 0. This assumes that the 

temperature change is measurable.  

 
 

Fig. 1 Shows an exothermic chemical reaction inside of System 1, driving 
the expansion of gaseous System 1. 

Our relatively new understanding is that the differences 
between isobaric and isometric heat capacity is due to lost 
work [3],[4],[7]. This means that  eq. (10) can be rewritten 
in terms of the gas’ isobaric molar heat capacity (Cp) as: 

𝑑𝑈 = −(𝑛𝐶/𝑑𝑇)()(0          (11) 
 

An exothermic reaction becomes a rare case, where one 
could conceive of a realistic adiabatic expanding process. 

IV. FORCED EXPANSION 
Before proceeding it should be stated that the pressure-

temperature relationship is now understood to be partially due 
to the inelastic intermolecular collisions within a system [6]-
[9],[11]-[14]. In other words, as one increases a system’s 
pressure, the amount of thermal energy created by the 
inelastic intermolecular collisions increases. Therefore, an 
insulated gaseous system’s compression results in its 
temperature increase. Conversely, in an insulated expanding 
gaseous system, the natural tendency is for the temperature to 
decreases as the system’s pressure decreases. Such 
temperature change with pressure change will often be 
comparatively small, if not infinitesimal.  

Furthering our understanding, consider the forced quasi-
static expansion of a hermetically sealed piston-cylinder, as 
illustrated in Fig. 2.  

The expanding gas is in an enclosed system, therefore it 
adheres to the ideal gas law [8],[11]-[13]. The isothermal 
nature of an uninsulated expanding ideal gas means that 
thermal energy must be freely-given into the expanding 
system from the surrounding atmosphere (see Qin in Fig. 2). 
Otherwise, as the gas expands, the pressure inside the piston-
cylinders decreases and due to the P-T relationship, its 
temperature should decrease.  

Although isothermal, the expanding system shown in Fig. 
2 is not an adiabatic process because the expanding force 
remains external to the system and thermal energy was freely-
given by the atmosphere. Here the surrounding atmosphere 
acted as an invisible heat bath maintaining the system’s 
isothermal nature.  

Is it a reversible process? If one removes the expanding 
force, then the process will reverse itself and the piston-
cylinder will return to its initial state. However, the work 
required to initially expand the piston-cylinder in Fig. 2 is 
lost. Therefore, it is an irreversible process although to some 
it provided the illusion of being reversible.  

Specifically, it was lost work, that being work into the 
surrounding atmosphere, which can be viewed as an 
irreversible atmospheric energy increase, as defined by, 
Wlost= (PdV)atm, [3]-[9],[11]-[14]. 

 

 
Fig. 2 Shows the initial (i) and final (f) states of an uninsulated gas during 

forced expansion. 
Importantly, when the expanding force is removed and the 

piston-cylinder contracts, the atmosphere’s energy increase 
as defined by Wlost, is transformed to kinetic energy, which 
can be viewed as thermal energy (heat) resulting in an 
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infinitesimal temperature increase of the atmosphere [3], 
[6],[7].  

V. FORCED COMPRESSION 
The concept of adiabatic is often applied to the storing of 

high-pressure gases. Consider that one compresses a gas by 
an external force, as shown in Fig. 3. If the piston-cylinder is 
not insulated and the compression is a quasi-static process, 
thermal energy can escape through the system’s walls into the 
surrounding atmosphere (see Qout in Fig 3). Accordingly, the 
compression can appear to be an isothermal process as 
measured with a thermometer. 

In the above isothermal compression, did the gas’ energy 
change? Since it is an enclosed system, the gas can be 
considered to obey the ideal gas law (so long as it remains 
sufficiently dilute) [11],[12]. In which case the gas’ energy is 
determined by its temperature. Since its temperature 
remained constant, the gas’ energy did not change. 

However, work was done onto the gas, hence the gas’ 
potential to do work [(VdP)gas] onto the surrounding 
atmosphere  has increased as defined by: 

 
𝑊/1+ = (𝑉𝑑𝑃)2*(        (12)  

  
Furthermore, during the gas’ compression, some of the 

surrounding atmospheric gas molecules experienced an 
increase to their kinetic energy, as they moved down towards 
Earth’s surface. And again, this can be considered as an 
infinitesimal increase to our atmosphere’s temperature.   

 If the compressing force is removed, then the gas will 
expand, returning to its original temperature and pressure. In 
so doing it performs lost work onto the surrounding 
atmosphere. Is this a reversible process? It may appear to be, 
but what about the energy that was used to compress the gas? 
It is now lost work into the atmosphere, therefore isothermal 
compression is not a reversible process. 

Next consider that the piston-cylinder is insulated and the 
gas within it is compressed. As the gas is compressed, its 
pressure increases. Therefore, the thermal energy associated 
inelastic intermolecular collisions increases and the gas’ 
temperature increases. 

Accordingly, not only did the gas’ potential to do work 
increase, as defined by eq. (12) but its temperature increased. 
Therefore, the gas’ thermal energy increased. It should be 
noted that this author’s kinetic theory is a superior  fit to 
known empirical findings, when compared to the traditionally 
accepted kinetic theory [11],[12]. 

 
Fig. 3 Shows the initial (i) and final (f) states of an uninsulated gas during 

compression 
Based upon this author’s superior fit kinetic theory, an N 

molecule gas with n” atoms in each molecule, has a total 
energy [11], [12]: 

 

𝐸$ ≅ 𝑁𝑘𝑇(𝑛" + 1/2)                   (13) 
 
Differentiating eq. (13) with respect to temperature gives: 
 

𝑑𝐸$ = (𝑛" + 1/2)𝑁𝑘𝑑𝑇                       (14) 
  
If the gas is monatomic (n”=1) then eq. (14) becomes: 
 

𝑑𝐸$ = 3𝑁𝑘𝑑𝑇/2                           (15) 
 
If the force of compression is removed, the gas will 

expand. During expansion its temperature will decrease, and 
it will perform lost work onto the surrounding atmosphere. 
As was the case for isothermal compression, non-isothermal 
compression is also an irreversible process because the 
energy required for the gas’ initial compression was lost. 

It should be emphasized that the ideal gas law is limited to 
sufficiently dilute gases in closed systems. Therefore, when 
compressing such a gas, there will be a point at which the 
ideal gas law loses it applicability. This occurs when the 
gaseous intermolecular inelastic collisions dominate over 
gas-wall molecule inelastic collisions  [8],[10],[11]. 

ISENTROPIC PROCESSES 
An isentropic process is accepted as a process that is both 

adiabatic and reversible [2],[10]. We have just seen that 
adiabatic processes are problematic. That being the case, 
what about isentropic processes (TdS=0)? Let’s investigate 

  Expanding systems are often described in terms of 
isothermal entropy change by: 

 
𝑇𝑑𝑆 = 𝑑𝐸 + 𝑃𝑑𝑉              (16) 
 

 Problems with eq. (16) have been discussed by this author 
[3]-[8],[10-12]. Basically, as is the case for eq. (1), eq. (16) 
lacks the clarity that eq. (6) possesses. Of course, eq. (16)’s 
clarity can be improved by writing:  

 
(𝑇𝑑𝑆)()( = 𝑑𝐸()( + (𝑃𝑑𝑉)*+,            (17) 
 

Why write a first law style equation based upon isothermal 
entropy change (TdS), such as eq. (16)? It starts by realizing 
that eq. (16) is fundamentally eq. (1) with TdS replacing dQ. 
 

 
Fig. 4  Shows a heat bath driving the expansion of a gaseous System 1. 
 
Instead of there being a thermal energy input (dQin), 

imagine that an expanding piston-cylinder is connected to a 
heat bath whose thermal energy drives the expansion of 
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gaseous System 1 (see Fig 4). Note that in this case the is no 
change of state, i.e. no change in bonding potential (dU=0). 

The heat transferred from the heat bath into System 1 is 
[(nCvdT)bath]. Accordingly, a first law equation that describes 
this process is: 

 
(𝑛𝐶!𝑑𝑇)3*+4 = −[(𝑛𝐶!𝑑𝑇)()(0 + (𝑃𝑑𝑉)*+,]   (18)      

 

In terms of System 1’s isobaric molar heat capacity (Cp), 
eq. (18) can be rewritten as [see eq. (11)]: 
 

(𝑛𝐶!𝑑𝑇)3*+4 =	−(𝑛𝐶/𝑑𝑇)()(0       (19) 
 
Consider that the thermal energy associated with the heat 

bath is orders of magnitude greater than the thermal energy 
required to increase System 1’s temperature plus perform lost 
work. Thus, there would be an immeasurable decrease in the 
heat bath’s temperature, i.e., dTbath=0. One observing this 
process might incorrectly assume that in terms of the heat 
bath, it is an isothermal process.  

If one then treats the process as an infinitesimal process, 
one might also conclude that, Tsys1=Tbath. As an isothermal 
process undergoing infinitesimal change the above 
suppositions enable one to illogically claim that this process 
can now be described in terms of isothermal entropy change 
(TdS), i.e., apply eq. (16).  

Consider that Fig. 4 is a real process doing real work. 
Therefore, the requirement for thermal energy transfer from 
the heat bath into System 1 must be Tbath>Tsys1. Specifically, 
if Tbath=Tsys1, heat is no longer exchanged between the heat 
bath and System 1 and now it is an adiabatic process as 
described by eq. (7).  

Furthermore, (nCvdT)bath=0 implies that, (nCvdT)sys1=0, 
therefore there is no lost work, i.e., no actual work could be 
done. This tells us that the traditional consideration of the 
process being isothermal is more idealistic than realistic.   

As Tsys1→Tbath, then the rate of energy exchange must 
decrease. The rate of thermal energy entering System 1 
(dq/dt) can be approximated in terms of some constant (C): 

 
%5
%+
= −𝐶𝐼𝑛 B$!"!#

$$%&'
C                      (20) 

 
 Think of eq. (20) in the following way. Thermal energy 

flows from both hot to cold, and cold to hot. However, the net 
direction is always from hot to cold, as measured by a 
thermometer, i.e. temperature and not entropy determines 
heat flow’s net direct [13]. For two systems of similar 
materials, this means the net flow is always from high to low 
thermal energy density. 

The requirement for System 1’s expansion remains that 
Psys1>Patm, and, so long as System 1 expands, it performs lost 
work. Even when connected to a heat bath, there must be a 
point where both System 1 and the heat bath start to cool 
down. Furthermore, any flow of thermal energy from the heat 
bath means that the expansion of System 1 cannot be an 
adiabatic process. 

As Psys1→Patm, then the rate of lost work being done 
decreases. Therefore, the rate of work being done can be 
approximated in terms of constant (A) by: 

 %6
%+
= −𝐴𝐼𝑛 B-!"!#

-%&(
C                   (21) 

 
Eq. (20) and eq. (21) demonstrate the requirements of 

natural logarithmic functionality in thermodynamic 
modeling. Importantly, these requirements do not involve 
isothermal entropy change, hence the use of TdS is in dire 
need of reconsideration. 

The reality becomes that expanding systems cannot be 
isentropic or even adiabatic. 

VI. TEMPERATURE-ENTROPY 
One cannot simply berate entropy without obtaining more 

clarity. Let us consider the simplest of all thermodynamic 
processes, that being the heating of a solid or liquid. The total 
energy change of condensed matter in terms of the total 
energy input (Qin), its isometric molar heat capacity (Cv), and 
temperature change (dT) is: 

 
𝑑𝑄'" = 𝑛𝐶!𝑑𝑇       (22) 

 
Substituting TdS in for Qin gives:  

 
𝑇𝑑𝑆 = 𝑛𝐶!𝑑𝑇      (23) 

 
This allows for the traditionally accepted: 
 
𝑑𝑆 = 𝑛𝐶!𝑑𝑇/𝑇     (24) 

 
Based upon eq. (24), one obtains an entropy-temperature 

graph such as that shown on the left side of Fig. 5, i.e., the 
graph for S vs T. The area under the curve becomes the total 
amount of heat given to the condensed matter. That being Qin.  

The amount of heat in (Qin) can be viewed another way. 
Imagine that the rate of heat transfer (dq/dt) was constant. 
Then for a given duration (dt), one would write: 
 

 𝑄'" = B%5
%+
C 𝑑𝑡      (25) 

 
Next consider that the rate of thermal energy transfer was 

not constant. Consider that as the condensed matter becomes 
hotter, the greater the effort must be in order to add more heat 
into that substance.  

 

 
 

Fig. 5  Shows an S vs T graph for the heating of condensed 
matter (liquid or solid) on the left side. On the right side is the 
same heating process but the graph is dq/dt vs dt. For both 
graphs the area under the curve equals the total amount of  
thermal energy (Qin) that is absorbed by the liquid or solid. 
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Now the change to the rate that thermal energy transferred 
into the condensed matter can be described by eq. (20). 
Substituting  eq. (20) into eq. (25) gives:                       
 

𝑄'" = −𝐶𝐼𝑛 B$!"!#
$$%&'

C𝑑𝑡										    (26) 
 

The total amount of thermal energy into the condensed 
matter is now shown on the right side of Fig 5, i.e., the graph 
for dq/dt vs dt . The total amount of heat is the area under its 
graph, which is the same as it is for the much more awkward 
to visualize entropy-temperature graph, as described by eq. 
(24). That being Qin.   

Could it be that part of the grandiose mistake in 
thermodynamics was simply not considering the rate of 
thermal energy decrease, as defined by eq. (20), and that this 
helps to explain what is witnessed in experiments. In other 
words, we lost track of the dynamics of time in 
thermodynamics, replacing it with a poorly-conceived 
entropy.  

Specifically, as the so-called entropy increased, the ability 
to add more thermal energy decreases. Of course, rather than 
deal with the quagmire that entropy presents, we could have 
just thought of the process in terms of rates of energy change.   

As extraordinary as that may be, it does seem to be the case. 

VII. ENTROPY AND CIRCULAR LOGIC 
 

Consider that, A=B+C is experimentally proven. Next you 
decide to set A=D, where D = f(M,N,…R), i.e., D is a 
complex function. Consider that the variables M, N…R in 
function D are calculated by either directly or indirectly, 
equating  f(M,N,…R) = B+C.   

Can we now say that D = B+C? It depends. If A = D was 
proven (experimentally?) beyond any doubt, then you can do 
so with a certain degree of confidence. However, if A=D is a 
mathematical conjecture, then to claim that the complex 
function proves B+C = D is a circular argument.  

It remains this author’s assertion that the replacement of 
the energy input (dQ) in eq. (1) with isothermal entropy 
change (TdS) resulting in eq. (16), was mathematical 
conjecture equivalent to the equating of A=D. This was 
followed by the creation of a brilliant yet overly-complex 
mathematics in which entropy was equated to a series of 
overly-complex functions. In other words, f(M,N,…R) 
became the foundation of what is known as statistical 
thermodynamics, which was equated to TdS.      

Interestingly, this author has previously discussed how 
Maxwell-Boltzmann distributions may be attributed to what 
is often witnessed concerning gases in closed systems [13].  

Arguably, if clarity was given to eq. (1), as was done with 
eq. (6), then entropy might not have become the foundation 
of thermodynamics that it became. Can we now say that 
traditionally accepted thermodynamics is based upon circular 
logic? Perhaps we had better say that it is based upon a 
circular argument that was extremely well-hidden by the 
enormity of its mathematical complexity.  

It has been shown by this author that entropy based 
thermodynamics is need of a rethink whether one is 
contemplating work [3]-[9], [11]-[14]or even Helmholtz and 
Gibbs free energy [9].  

VIII. ATMOSPHERE AS A HEAT BATH 
The final piece of the puzzle comes from accepting that the 

atmosphere is a massive heat sink/bath. Therefore, 
measurable change to its parameters does not occur when 
considering normal real processes that give or extract thermal 
energy from it. This explains why our atmosphere is thought 
of as an isobaric, isothermal, and isometric system. Clearly, 
if an abundance of real processes occurs, then the 
atmosphere’s parameter change would become measurable, 
i.e. climate change [14]. 

Accordingly, although our atmosphere influences almost 
all systems here on Earth, this fact has gone unnoticed. One 
can view our atmosphere as the “mother of all heat baths” 
because: 
• it provides freely-given energy to most isothermal 

expanding systems. 
• it absorbs thermal energy from most isothermal 

systems under compression.  
• it provides thermal energy to other heat baths.  
• it is the heat bath that all other systems (including 

experimental heat baths) are compared to  [6], [12]. 

As the mother of all heat baths, our atmosphere’s 
influences upon systems has gone unnoticed far too 
long.  

IX. CONCLUSION 
Few processes that involve either the compression or the 

expansion of a gas can be considered as being an adiabatic 
process. This is due to the fact that expanding systems must 
do work onto the surrounding atmosphere, that being 
irreversible work, known as “lost work”.  

The traditional conceptualization of isentropic processes 
should be abandoned. Furthermore, the traditional 
consideration of isothermal entropy is an illogical concept 
based upon rash and questionable assertions. 

Entropy is founded upon a circular argument, that at its 
core can be replaced with rationalizations concerning changes 
to the rates of thermal energy change as well as the rate of 
work.  

This means that we must rethink the way we teach and 
write thermodynamics. A science that is claimed by too many 
to be a mature science that warrants no challenges. 
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