ChatGPT4 on the Color Theory

Jiří Stávek

Abstract — This is my first attempt to communicate with ChatGPT4 on the color theory. ChatGPT4 reacted promptly with a good overview of this very wide topic. ChatGPT4 during our half hour conversation concluded that there is still a room for the further development of the physical color theory because this research field is far from the final theory. One potential candidate for a more general physical theory can be found in the overlooked works of Old Masters working in the 17th Century.

Keywords — ChatGPT4, Color Theory, New Proposals for Research.

I. INTRODUCTION

ChatGPT4 offers a quick overview of this old research field with many branches of investigation from pure theoretical papers to many application topics. Chat GPT4 can serve to even well-informed readers to propose some new alternatives to the standard routine activities.

II. CONVERSATION WITH THE CHATGPT4

ChatGPT4 session on color theory proceeded on July 25, 2023 between 7.30-8.00 MET.

JS: Hello, this time I would like to ask you to explain to me what is the color theory?
ChatGPT4: Hello! I’d be happy to explain color theory to you.
Color theory is the study and understanding of how colors interact, mix, and are perceived by the human eye and brain. It is an essential concept in various fields, including art, design, photography, fashion, and even psychology. The way colors are combined and used can evoke different emotions, moods, and visual effects, making color theory a valuable tool for creating impactful and aesthetically pleasing compositions.

Here are some key components of color theory:

1. **Color Wheel**: The color wheel is a circular representation of colors that shows their relationship to each other. It typically includes primary colors (red, blue, and yellow), secondary colors (orange, green, and purple), and tertiary colors (created by mixing primary and secondary colors). The arrangement of colors on the wheel helps us understand their harmonies and contrasts.

2. **Primary Colors**: These are the fundamental colors that cannot be created by mixing other colors. All other colors are derived from combinations of primary colors. In the traditional color model, the primary colors are red, blue, and yellow.

3. **Secondary Colors**: These colors are created by mixing two primary colors. For example, mixing red and blue creates purple, mixing blue and yellow creates green, and mixing red and yellow creates orange.

4. **Tertiary Colors**: Tertiary colors are formed by mixing a primary color with a secondary color. For instance, red-orange, yellow-green, and blue-purple are tertiary colors.

5. **Complementary Colors**: These are pairs of colors that are located opposite each other on the color wheel. When placed next to each other, complementary colors create contrast and make each other appear more vibrant. For example, red and green, blue and orange, and yellow and purple are complementary pairs.

6. **Analogous Colors**: Analogous colors are located next to each other on the color wheel. They share a similar undertone and create a harmonious and unified feeling when used together. For instance, red, orange, and yellow form an analogous color scheme.

7. **Warm and Cool Colors**: Colors can be categorized as warm or cool based on the emotions they evoke. Warm colors like red, orange, and yellow tend to feel energetic, vibrant, and inviting. Cool colors like blue, green, and purple evoke a sense of calmness, tranquility, and serenity.

Submitted on September 06, 2023.
Published on October 12, 2023.
J. Stávek, Independent researcher, Prague, Czech Republic.
(corresponding e-mail: stavak.jiri@seznam.cz)
8. **Color Harmony**: Achieving color harmony involves creating a pleasing and balanced combination of colors. Different color harmonies, such as complementary, analogous, and triadic, can be used to create various visual effects and moods.

Understanding color theory allows artists, designers, and anyone working with color to make informed decisions about color selection, create appealing compositions, and evoke specific emotions or responses from viewers. It's a versatile and powerful tool that helps enhance visual communication and aesthetics across various disciplines.

JS: Thank you, who are ten most important researchers in the development of the color theory?

ChatGPT4: Color theory has been a subject of interest and exploration by numerous researchers, artists, and scientists over centuries. Here are ten influential figures who significantly contributed to the development of color theory:

These individuals, among others, played crucial roles in shaping our understanding of color theory, and their contributions continue to influence various fields and disciplines today.

1. **Isaac Newton (1642-1727)**: The English physicist and mathematician is widely known for his groundbreaking work on optics, including his experiments with prisms that led to the discovery of the spectrum of colors and the concept of primary colors.
2. **Johann Wolfgang von Goethe (1749-1832)**: The German writer and philosopher is known not only for his literary works but also for his comprehensive treatise on color theory, "Theory of Colours." Goethe explored the psychological and emotional aspects of colors and challenged Newton's ideas.
3. **Michel-Eugène Chevreul (1786-1889)**: A French chemist and color theorist, Chevreul is known for his work on color contrast and simultaneous contrast. His research laid the foundation for understanding the interactions of colors and how they influence each other when placed together.
4. **Albert Henry Munsell (1858-1918)**: An American painter, teacher, and inventor, Munsell created the Munsell color system in the early 20th century. His system provided a practical way to organize and describe colors based on hue, value, and chroma, and it became widely used in various industries.
6. **Josef Albers (1888-1976)**: Another Bauhaus artist and educator, Albers focused on the interaction of colors through his famous series "Homage to the Square." He examined how colors can create optical illusions and how they influence perception.
7. **Faber Birren (1900-1988)**: An American color consultant and author, Birren conducted extensive research on the psychological and physiological effects of color. He wrote numerous books on color theory and its practical applications.
8. **Moses Harris (1730-1788)**: An English entomologist and engraver, Harris published the first full-color circle in his book "The Natural System of Colours." His work influenced later color theorists and artists.
9. **Wassily Kandinsky (1866-1944)**: A Russian painter and art theorist, Kandinsky was a pioneer of abstract art. His book "Concerning the Spiritual in Art" delved into the emotional and spiritual aspects of color and its role in non-representational art.
10. **Harald Küppers (1915-1997)**: A German physicist and color researcher, Küppers studied the perception of color and color harmony. He developed the color-order systems theory, which sought to explain how colors are ordered and organized in human vision.

JS: Thank you, can you name several researchers in the 17th century who formulated some alternative color theories?

ChatGPT4: In the 17th century, several researchers formulated alternative color theories that challenged and expanded upon the ideas put forth by Sir Isaac Newton. Here are some notable figures from that period:

It's important to note that the 17th century was a period of significant advancement in the understanding of optics and light, and many researchers of that time contributed to the growing body of knowledge regarding color and vision. Their alternative theories and ideas paved the way for further investigations and debates about the nature of colors, perception, and the physics of light.

1. **Robert Hooke (1635-1703)**: An English natural philosopher and polymath, Hooke was a contemporary of Newton and conducted experiments in various scientific fields. While he did not propose a comprehensive color theory, he made significant contributions to the understanding of optics and the nature of light, including observations on the refraction and dispersion of light.
2. Antonie van Leeuwenhoek (1632-1723): A Dutch scientist and inventor, Leeuwenhoek is best known for his pioneering work in microscopy. Although he did not develop a color theory explicitly, his observations and discoveries in the field of optics contributed to the understanding of light and the properties of colors.

3. Nicolas Malebranche (1638-1715): A French philosopher and theologian, Malebranche was critical of Newton's theory of colors. He argued that colors were not inherent properties of objects but rather the result of how light interacts with the human perceptual system.

4. Samuel Gottfried von Leibniz (1646-1716): A German philosopher, mathematician, and polymath, Leibniz engaged in discussions about color and vision. He proposed that colors arise from the perception of the mind and that they do not have an objective existence in the external world.

5. René Descartes (1596-1650): While Descartes is best known for his contributions to philosophy and mathematics, he also wrote about optics and color perception. He explored the idea that colors were produced by the motion of particles and light in a way that differed from Newton's theory.

JS: Thank you, what are ten most important papers dealing with the color theory?

ChatGPT4:
As of my last update in September 2021, it's challenging to provide a definitive list of the ten most important papers dealing with color theory, as different papers may hold varying significance based on the context and field of study. However, here are ten influential papers that have made significant contributions to the understanding of color theory and related topics:

Keep in mind that the field of color theory is continuously evolving, and new research may have emerged since my last update. Additionally, the significance of papers may vary depending on the specific area of color theory or the context in which they are considered.

1. "Opticks: Or, A Treatise of the Reflections, Refractions, Inflections, and Colours of Light" by Sir Isaac Newton (1704): In this seminal work, Newton presented his experiments with prisms, which led to the understanding of the spectrum of colors and the concept of primary colors.

2. "Theory of Colours" by Johann Wolfgang von Goethe (1810): In this influential book, Goethe explored the psychological and emotional aspects of colors, proposing an alternative theory to Newton's ideas based on human perception and artistic considerations.

4. "Interaction of Color" by Josef Albers (1963): This classic work by Albers delves into the interactions of colors and explores optical illusions created by color juxtapositions, providing valuable insights into color perception.

6. "Color Order Systems in Art and Science" by Faber Birren (1969): Birren, a prominent color consultant, and researcher discusses the organization and classification of colors in different color systems, exploring their applications in art and science.

7. "Color Appearance Models" by Mark D. Fairchild (2005): This paper provides an in-depth exploration of color appearance models, which are mathematical models that aim to predict how colors will be perceived under various viewing conditions.

8. "Color Naming Models: A Review and Future Directions" by Changqing Zhou and M. Ronnier Luo (2010): This review paper discusses various color naming models that attempt to understand how colors are named and categorized across different cultures and languages.

JS: Thank you, what are some possible alternatives to the classical color theory?

ChatGPT4:
There are several alternative approaches to color theory that challenge or extend the classical color theory, such as:

1. **Practical Color Theory**: Rather than focusing on complex scientific principles, practical color theory emphasizes intuitive and straightforward color combinations for artistic and design purposes. It may rely more on personal preferences and aesthetics rather than strict scientific rules.
2. **Color Psychology**: This approach explores the psychological and emotional impact of colors on human behavior, mood, and perception. Color psychology suggests that different colors can evoke specific emotions or reactions in individuals and can be used strategically in various contexts, such as marketing and branding.

3. **Color Harmony in Nature**: Some alternative theories draw inspiration from natural occurrences of color harmony, such as the color patterns found in flowers, animals, and landscapes. The idea is to imitate and apply these harmonies in art and design.

4. **Cultural Color Theory**: This approach examines how different cultures perceive and categorize colors, challenging the universality of color perception. It acknowledges that the significance and symbolism of colors can vary widely across cultures.

5. **Munsell Color System**: The Munsell color system, developed by Albert Henry Munsell, organizes colors based on three attributes: hue, value (lightness or darkness), and chroma (color purity or intensity). It offers a more systematic and scientific way of describing and organizing colors.

6. **Subtractive Color Theory**: While the classical color theory is based on additive color mixing (e.g., mixing colored light), subtractive color theory deals with mixing colored pigments or dyes. It is commonly used in printing and art, where colors are mixed by subtracting wavelengths from the light reflected by the surface.

7. **Digital Color Theory**: In the context of digital media and computer graphics, color theory considers color representation in digital systems, such as RGB (Red, Green, Blue) and CMYK (Cyan, Magenta, Yellow, Black) color models, as well as color management for accurate color reproduction across devices.

8. **Color Semiotics**: This theory explores the symbolic meanings and associations of colors in various contexts, including cultural, social, and historical references. Colors are studied as carriers of meaning and cultural messages.

9. **Color Interaction Theory**: This approach examines how colors interact when placed near each other and how they influence each other's appearance. It explores phenomena like simultaneous contrast and color harmony.

10. **Color Constancy**: This concept addresses the human ability to perceive the color of an object consistently under varying lighting conditions. It challenges the idea that the color of an object is an intrinsic property, suggesting that color perception is relative to the surrounding context.

These alternative approaches provide valuable insights and perspectives on color, and they are often used in conjunction with classical color theory to create a more comprehensive understanding of how color works and can be utilized in different fields and applications.

JS: Thank you, what is the mechanism behind the color formation?

ChatGPT4: The mechanism behind color formation is a complex interplay of physics, biology, and perception. It involves the interaction of light with objects and our visual system's ability to interpret and process this information. Here's a simplified explanation of the key elements involved in color formation:

Overall, color formation is a fascinating and intricate process that involves the physics of light, the interaction of light with objects, and the complex workings of our visual system and brain. Our perception of color is a subjective experience shaped by both physical properties and cognitive processes.

1. **Light Source**: Color starts with light. Light is composed of electromagnetic waves that travel in various wavelengths. The human eye is sensitive to a specific range of these wavelengths, which we perceive as colors.

2. **Object Interaction**: When light encounters an object, several things can happen. The object can absorb some wavelengths of light while reflecting others. The wavelengths that are reflected determine the color of the object as perceived by our eyes. For example, an object that appears red is reflecting red light and absorbing other wavelengths.

3. **Human Eye**: Our eyes play a vital role in color formation. The eye contains specialized cells called cones that are sensitive to different ranges of wavelengths. There are three types of cones, each tuned to perceive red, green, or blue light. The brain combines the signals from these cones to create the full spectrum of colors we see.

4. **Color Perception**: The brain processes the signals received from the cones in our eyes to create our perception of color. It combines the information from the cones' responses and takes into account factors like lighting conditions and color contrast to interpret and categorize the colors we observe.

5. **Additive and Subtractive Color Mixing**: The combination of different colors can produce new colors through additive or subtractive color mixing. Additive color mixing occurs with light sources, like computer screens, where combining red, green, and blue light creates white light.
Subtractive color mixing occurs with pigments or dyes, where mixing cyan, magenta, and yellow creates black (in theory, though in practice it creates a dark brown), as the pigments subtract light by absorbing certain wavelengths.

6. **Color Temperature**: Color temperature refers to the warmth or coolness of light. Higher color temperatures (measured in Kelvin) are associated with cooler, bluish light, while lower color temperatures are associated with warmer, reddish light. Color temperature can significantly influence how colors are perceived in a scene.

7. **Color Constancy**: Color constancy is the ability of our visual system to perceive an object's color consistently under varying lighting conditions. It allows us to recognize the color of an object accurately, regardless of whether it is in bright sunlight or shadow.

JS: Thank you, what types of experiments should be done to further develop the color theory?

ChatGPT4: To further develop color theory, researchers can conduct various types of experiments to explore different aspects of color perception, interaction, and application. Here are some potential experiments that could be conducted:

These experiments, along with advances in technology and interdisciplinary collaboration, can contribute to a deeper understanding of color theory and its practical applications in various fields. Additionally, research that addresses the dynamic interaction between color, culture, and human perception can further enrich the development of color theory.

1. **Color Perception Studies**: Conduct experiments to study how individuals perceive and categorize colors. This could involve color naming studies across different cultures and languages to understand the universality or cultural variations in color perception.

2. **Color Harmony and Aesthetics**: Investigate how different color harmonies and combinations affect people's emotional responses and aesthetic preferences. This could involve conducting surveys or experiments to assess participants' preferences for various color palettes in art, design, or interior spaces.

3. **Color and Visual Attention**: Explore how color influences visual attention and cognitive processes. This could include experiments on how color contrast and combinations affect eye movement and focus in visual scenes.

4. **Color and Emotions**: Examine the psychological and emotional effects of colors on individuals. Researchers could conduct experiments to assess how specific colors evoke different emotions and how these emotional responses may vary among individuals.

5. **Color and Memory**: Investigate the role of color in memory recall and recognition. Experiments could be designed to study how color cues enhance or influence memory retention and retrieval.

6. **Color and Marketing/Advertising**: Conduct experiments to explore how color choices in marketing materials and advertisements impact consumer behavior, brand perception, and purchase decisions.

7. **Color and Cross-Modal Associations**: Investigate cross-modal associations between color and other sensory modalities (e.g., taste, smell, texture). Experiments could explore how color influences perceptions of other sensory experiences.

8. **Color and User Experience (UX)**: Explore how color choices in user interfaces (e.g., websites, apps) affect user experience, usability, and engagement. This could involve usability testing and user feedback on different color schemes.

9. **Color and Visual Illusions**: Study color-related visual illusions and how they can be influenced by factors such as color contrast, luminance, and context.

10. **Color Reproduction and Color Management**: Examine color reproduction accuracy in different media (e.g., printing, digital displays) and explore color management techniques to ensure consistent color perception across various devices and environments.

11. **Color in Medical and Therapeutic Contexts**: Investigate how color is used in medical environments and therapeutic settings and its potential impact on patients' well-being and recovery.

12. **Color and Design Accessibility**: Research how color choices affect accessibility for individuals with visual impairments or color vision deficiencies. This could involve experiments to evaluate the usability and legibility of different color combinations.

JS: Thank you, who are ten most important researchers developing the color theory in the 21st century?

ChatGPT4: As of my last update in September 2021, the 21st century has seen continued research and development in color theory across various disciplines. Here are ten notable researchers who have made significant contributions to the understanding and advancement of color theory in recent years:
1. **Lindsay MacDonald**: A color scientist and researcher, MacDonald focuses on color perception, color appearance modeling, and visual aesthetics. She has contributed to studies on color constancy and color adaptation.

2. **David H. Brainard**: Known for his work in computational color vision and visual neuroscience, Brainard has made significant contributions to understanding how the human visual system perceives and processes color.

3. **Sophie Wuerger**: As a researcher in color vision, Wuerger has investigated topics such as color discrimination, color constancy, and the effects of color on visual attention.

4. **Stephen Westland**: A prominent color researcher, Westland has worked on color science, measurement, and color appearance modeling, contributing to various applications in industries such as imaging and printing.

5. **Hany Farid**: Although best known for his work in digital forensics and image analysis, Farid has also contributed to color perception research and its applications in image processing.

6. **Laurence T. Maloney**: Maloney is a researcher who has studied human visual perception, including color vision, and has made contributions to color appearance modeling.

7. **Graham Finlayson**: A color imaging researcher, Finlayson has worked on topics like color constancy, color reproduction, and computational color analysis.

8. **Ralph W. Pridmore**: Pridmore's research has focused on color science, visual perception, and color harmony, exploring various aspects of color theory in both artistic and scientific contexts.

9. **AnyVision Color Research Group**: This interdisciplinary research group focuses on color vision, perception, and applications in computer vision, machine learning, and computer graphics.

10. **Christoph Witzgall**: Known for his work in color image processing and computer vision, Witzgall has explored color perception, color constancy, and the impact of color in visual applications.

Please note that the field of color research is constantly evolving, and there may be other researchers who have made significant contributions to color theory in the 21st century since my last update.

JS: Thank you, does it make sense to study alternative models of the color theory of researchers from the 17th century?

ChatGPT4:

Studying alternative models of color theory proposed by researchers from the 17th century can be a valuable and enriching endeavor for several reasons:

1. **Historical Context**: Understanding alternative color theories from the 17th century provides valuable insights into the historical development of the field. It allows researchers to trace the evolution of ideas and theories about color perception and how they influenced later developments.

2. **Critical Analysis**: By studying alternative models, researchers can critically evaluate the strengths and weaknesses of different approaches to color theory. This analysis can lead to a deeper understanding of the complexities involved in explaining color perception and interaction.

3. **Broadening Perspectives**: Exploring alternative models opens up new perspectives and ideas about color. It encourages researchers to think beyond the established classical color theory and consider different conceptual frameworks that might provide novel ways of understanding color phenomena.

4. **Inspiration for Contemporary Research**: Some alternative models from the 17th century might contain insights that are relevant to contemporary color research. Researchers can draw inspiration from historical ideas and adapt them to modern contexts, leading to innovative approaches and applications.

5. **Interdisciplinary Connections**: Color theories from the 17th century often intersect with fields such as art, philosophy, and psychology. Studying these alternative models can foster interdisciplinary connections and enrich color research from multiple angles.

6. **Cultural and Contextual Perspectives**: Alternative color theories from the 17th century might have been shaped by the cultural and philosophical contexts of that time. Analyzing these theories can provide a deeper understanding of how color perception and symbolism were viewed in different historical periods.

7. **Comparative Studies**: Comparative studies between classical color theory and alternative models can reveal points of agreement and disagreement, leading to a more comprehensive understanding of color principles and the diversity of approaches to color research.

8. **Educational and Pedagogical Benefits**: Incorporating alternative color theories into educational curricula can enhance students' learning experiences by exposing them to a broader range of ideas and perspectives.

While studying alternative models from the 17th century can be beneficial, it's essential to balance historical research with contemporary developments in color science. Combining historical insights with modern color research can lead to a more comprehensive and nuanced understanding of color theory and
its practical applications.

JS: Thank you, is it possible to find some overlooked aspects of the color theory published by researchers in the 17th and 18th centuries? Can you name ten papers describing those alternative models of the color theory?

ChatGPT4: While color theories from the 17th and 18th centuries have laid the foundation for our understanding of color, there are certainly aspects that might have been overlooked or underappreciated in the context of modern research. As for ten papers describing alternative models of color theory from that era, detailed academic papers or publications might not be readily available or directly accessible due to the limited digitalization and dissemination of historical works. However, I can mention ten notable figures who contributed to color theory during that time, and you can explore their works for further insights:

1. Robert Fludd (1574-1637): A physician, alchemist, and mystical philosopher, Fludd's works included detailed illustrations of the "macrocosmic" and "microcosmic" aspects of color in his "Utriusque Cosmi, Maioris scilicet et Minoris, Metaphysica, Physica, Atque Technica Historia" (1617-1624).
2. Athanasius Kircher (1602-1680): The Jesuit scholar and polymath explored the nature of colors, optics, and prisms in his works such as "Ars Magna Lucis et Umbrae" (1646).
4. Robert Boyle (1627-1691): The founder of modern chemistry and physicist, Boyle conducted experiments on color and light, contributing to the understanding of the nature of colors.
5. Francis Bacon (1561-1626): The philosopher and statesman, known for his empirical approach, mentioned aspects of color and light in his works, including "Novum Organum" (1620).
6. Gottfried Wilhelm Leibniz (1646-1716): The German philosopher and mathematician, Leibniz wrote on the philosophy of color in works such as "De Ipsa Natura" (1698).
7. Christian Huygens (1629-1695): The Dutch mathematician and scientist, Huygens conducted experiments on light and color, contributing to the understanding of color phenomena.
8. John Locke (1632-1704): The British philosopher, Locke discussed the nature of color perception and the primary qualities of objects in his "An Essay Concerning Human Understanding" (1689).
9. René Descartes (1596-1650): The French philosopher and mathematician, Descartes explored color and light in his works, including "Dioptrique" (1637).
10. Martin Maria Komenský (Comenius) (1592-1670): A Moravian philosopher and educator, Komenský discussed the nature of colors in his works, including "Lux in Tenebris" (1657).

While these researchers might not have published papers in the modern sense, their works contain valuable insights into color theory and the understanding of colors during the 17th and 18th centuries. Exploring their writings can offer a glimpse into alternative models and overlooked aspects of color theory from that era.

JS: Thank you, what experiments should be realized to further develop models of the color theory of these Old Masters?

ChatGPT4: To further develop models of color theory based on the works and ideas of Old Masters from the 17th and 18th centuries, researchers can conduct various experiments that combine historical insights with modern methodologies. Here are some potential experiments that can help in this endeavor:

1. Recreating Historical Color Mixing Experiments: Replicate historical color mixing experiments conducted by Old Masters to understand their methodologies and validate their findings. This could involve using traditional pigments and materials to recreate their color mixing processes.
2. Color Perception Studies: Conduct experiments to explore how the historical use of colors by Old Masters affects contemporary viewers' perception and emotional responses. This could involve presenting historical artworks to participants and studying their color preferences and emotional reactions.
3. Historical Color Pigment Analysis: Analyze historical artworks to identify the pigments used by Old Masters and study their color properties, longevity, and interactions. This can provide valuable insights into the materials and techniques that influenced color choices.
4. Cross-Cultural Color Symbolism: Investigate the cultural symbolism and meaning of colors in the historical contexts of different regions where Old Masters worked. Compare how colors were interpreted and used in different cultures during that time.
5. Color and Light Source Studies: Explore how the choice of light sources (e.g., natural daylight, candlelight) affects the perception of colors in historical artworks. This can shed light on the...
importance of lighting conditions in the interpretation of colors by Old Masters.

6. **Color Contrast and Composition Analysis**: Analyze the color contrasts and compositions used by Old Masters in their artworks. Conduct experiments to understand how these color choices influence visual attention and impact the overall aesthetic experience.

7. **Historical Color Naming and Categorization**: Study how colors were named and categorized by Old Masters in their writings and artworks. Analyze their color terminology and compare it with contemporary color naming systems.

8. **Color and Textures**: Investigate the relationship between color and textures in historical artworks. Examine how colors were used to depict different materials and surfaces and how this influenced the perception of the artwork.

9. **Influence of Color Theory on Art Education**: Explore the impact of Old Masters' color theories on art education during their time and beyond. Study how their ideas were transmitted to future generations of artists and how they influenced artistic practices.

10. **Validation of Alternative Models**: For Old Masters who proposed alternative color theories, conduct experiments to validate and compare their models with modern color science and contemporary color perception research.

These experiments, when combined with historical research and interdisciplinary collaboration, can help bridge the gap between classical color theory and contemporary color science, providing a more comprehensive understanding of color in art and its applications across different fields.

JS: Thank you very much for your support and inspirations. I will try to formulate an experiment to further develop the color theory.

ChatGPT4:

You're very welcome! I'm glad I could provide support and inspiration for your experiment on color theory. Designing experiments to explore and develop color theory can be a fascinating and rewarding endeavor. Remember to consider the research question you want to address, the hypothesis you want to test, and the methodology that best suits your objectives.

If you have any specific questions or need further assistance while formulating your experiment, feel free to reach out. Good luck with your research, and I hope your experiment contributes valuable insights to the field of color theory!

III. CONCLUSION

GPT4 at this stage of its development can bring a quick and broad overview of very branched fields of research. There might be found several surprises even for well-educated scholars.

ACKNOWLEDGMENT

We were supported by contract number 0110/2020.

CONFLICT OF INTEREST

Author declares that they do not have any conflict of interest.

REFERENCES